
November 1, 2010 17:39 S1793545810001143

Journal of Innovative Optical Health Sciences
Vol. 3, No. 4 (2010) 293–305
c© World Scientific Publishing Company
DOI: 10.1142/S1793545810001143

A DIFFUSION–TRANSPORT HYBRID METHOD FOR
ACCELERATING OPTICAL TOMOGRAPHY
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It is well acknowledged that the equation of radiative transfer (ERT) provides an accurate
prediction of light propagation in biological tissues, while the diffusion approximation (DA) is
of limited accuracy for the transport regime. However, ERT-based reconstruction codes require
much longer computation times as compared to DA-based reconstruction codes. We introduce
here a computationally efficient algorithm, called a diffusion–transport hybrid solver, that makes
use of the DA- or low-order ERT-based inverse solution as an initial guess for the full ERT-based
reconstruction solution. To evaluate the performance of this hybrid method, we present extensive
studies involving numerical tissue phantoms and experimental data. As a result, we show that
the hybrid method reduces the reconstruction time by a factor of up to 23, depending on the
physical character of the problem.
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1. Introduction

Diffuse optical tomography has emerged as a
promising imaging modality that provides three-
dimensional imaging of optical properties in biolog-
ical tissue. Knowledge of such optical properties in
tissue is very important for monitoring biological
and physiological changes in tissue and for detecting
various diseases long before the macroscopic symp-
toms appear. Thus this optical imaging technique
has been mainly applied to breast imaging,1–3 brain
imaging,4–8 finger-joint imaging,9–11 and small ani-
mal studies.12–15 This technique recovers the spatial
distribution of optical properties in tissue from the
outing radiation measured at boundary surfaces.

So-called model-based iterative image reconstruc-
tion algorithms (MOBIR)16–26 are employed to find
the optimal distribution of optical properties inside
the medium, which requires a forward model of light
propagation to predict the measured values on the
boundary and the objective function that quanti-
fies the difference between predicted and actually
measured values.

In the past decades, the diffusion approxima-
tion (DA) to the equation of radiative transfer
(ERT) was most commonly employed as a light
propagation model in tissue optics. It is however
well known that the DA becomes less accurate for
the cases of high-absorbing, low-scattering media,
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or small-tissue volumes, and is further compromised
if fluid-filled regions, which contain cerebrospinal
or synovial fluids, are considered.27 These problems
can be overcome by employing the ERT that pro-
vides accurate prediction of light propagation for
all types of media. However, ERT-based reconstruc-
tion codes require much longer computation times
as compared to DA-based reconstruction codes.
Thus it remains a challenging problem to develop
computationally efficient ERT-based reconstruction
schemes since the reconstruction process requires
a large number of repeated forward simulations
that often lead to prohibitively long computing
times.

In this work, we present a DA-ERT hybrid
approach that makes use of the DA- and low-order
ERT as a forward model of light propagation to
obtain a better initial guess. This approach can
be used to accelerate the ERT-based image recon-
struction process while maintaining the reconstruc-
tion accuracy. To begin with a description of the
method, we define here some terms: hereafter the
term “low-order” in the ERT means an S2 or S4

order of the SN quadrature (i.e., discrete ordinates)
method, and the term “conventional or full ERT”
indicates an S8 quadrature ERT (not a hybrid
scheme). The main idea behind this hybrid method
is as follows: since the DA or low-order ERT is com-
putationally much more efficient as compared to the
full ERT, we start the reconstruction with these
computationally inexpensive models to a certain
level of the objective function. After that point we
replace the DA or low-order ERT model by the full
ERT and continue the reconstruction to full conver-
gence. In this way the hybrid method can achieve
an optimum of the spatial distribution of unknown
parameters while taking a much smaller number of
full-ERT-based function evaluations. Thus we can
accelerate the full ERT-based reconstruction pro-
cess by using the DA- and low-order ERT forward
model.

In this work, we introduce two types of hybrid
codes: one is the DA-based hybrid code that uses
the DA model to obtain the intermediate solution,
and the other is the low-order (S2 or S4) ERT-based
hybrid code that uses the S2 or S4 ERT model to
obtain the intermediate solution. In the following,
we provide a detailed description of the new method
and present numerical and experimental studies,
with a focus on the code performance in terms of
CPU time and accuracy, by comparing the results of

the hybrid code to those of the conventional ERT-
based code.

2. Forward Problem

2.1. Light propagation model

In this work, we employ frequency domain data. In
this case the light source is amplitude-modulated
by frequencies in the range of 50 to 1,000 MHz, and
demodulation and phase shift of the photon density
waves in tissue are measured.

2.1.1. Equation of radiative transfer
(ERT)

The frequency-domain forward problem for light
propagation in turbid media can be accurately mod-
eled by the frequency-dependent equation of radia-
tive transfer, given by Ref. 16:[

Ω · ∇ + µa + µs + i
ω

c

]
I(r,Ω, ω)

=
µs

4π

∫
4π

I(r,Ω′, ω)Φ(Ω′ → Ω)dΩ′

+ Sc(r,Ω, ω), (1)

where i =
√−1, r and ω are the spatial position vec-

tor and the modulation frequency, respectively, c is
the speed of light in the medium and Ω is the direc-
tion of photon propagation. The positive functions
µa(r) and µs(r) are the absorption and scattering
coefficients [cm−1], respectively, and the unknown
quantity I(r,Ω, ω) is the complex-valued radiation
intensity, defined at r as a radiant power per unit
solid angle per unit area normal to the direction of
propagation Ω modulation frequency ω. The nor-
malized scattering phase function Φ(Ω′ → Ω) is the
probability that photons traveling in the direction
Ω′ scatter into direction Ω. We use the Henyey–
Greenstein phase function28 that is commonly used
in tissue optics as:

Φ(Ω′ → Ω) =
1 − g2

(1 + g2 − 2g cos Θ)3/2
, (2)

where Θ is the angle between Ω and Ω′ and g is
the anisotropy factor which measures how peaked
the scattering is. In order to treat anisotropic scat-
tering properly, we renormalize the phase func-
tion (2) according to the procedure of Kim and
Charette.25
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In this work we implemented a partially reflec-
tive boundary condition which allows us to con-
sider the refractive index mismatch at the air–tissue
interface as29:

Ib(rb,Ω, ω)|nb·Ω<0 = I0(rb,Ω, ω) + R(Ω′,Ω)

· I(rb,Ω′, ω)|nb·Ω′>0, (3)

where R(Ω′,Ω) is the reflectivity at Fresnel inter-
face from direction Ω′ to direction Ω, I0

b (r,Ω, ω) is
the radiation intensity due to the external source
function, and subscript b denotes the boundary
surface of the medium, while nb is the unit nor-
mal vector pointing outwards from the boundary
surface. The refraction index of the medium is
fixed at 1.37 throughout this study. The spatial
domain in Eq. (1) is discretized with an unstruc-
tured node-centered finite-volume method and the
angular domain with the discrete ordinates formu-
lation. The SN quadrature scheme is employed that
fits well into the discrete ordinates method, which
replaces the equation of radiative transfer by the set
of N(N +2) coupled discretized equations. The dis-
cretization equations for all control volumes form
the linear equation given by AI = b, where the
matrix A contains the coefficients resulting from
discretization of Eq. (1) and the boundary condition
comes into the vector b as a result of discretization
on Eq. (3). The resulting algebraic equation AI = b
is solved iteratively for the complex-valued intensity
I(r,Ω, ω) through a Generalized Minimal Residual
(GMRES(n)) solver,30 where n denotes the num-
ber of iterations after which a GMRES solver is
restarted. The complex-valued detector function,
which predicts the detector readings at boundary
surfaces, is defined as

Prw =
∫
n·Ω>0

T (rw,Ω)I(rw,Ω, ω)(n · Ω)dΩ, (4)

where T (rw,Ω) is the transmissivity from the
medium into the air, n is the outward vector normal
to the surface and rw is the position vector of the
detector.

2.1.2. Diffusion approximation (DA)

The light propagation in scattering-dominant (i.e.,
high-scattering and low-absorbing) media can be
accurately described by the diffusion approximation
(DA) that has been widely used in tissue optics.
The frequency-domain version of the DA can be

written as16

−∇ · D(r)∇U(r, ω) +
(
µa +

ω

c
i
)

U(r, ω)

= f(r) in X,

U(r, ω) + 2D(r)A
∂U(r, ω)

∂n
= 0 in ∂X,

(5)

where A is the correction coefficient with reflection
due to mismatched refractive indices, U(r, ω) and
D(r) are the radiation density and the diffusion
coefficient given respectively as

U(r, ω) =
∫

4π
I(r,Ω, ω)dΩ and

D(r) =
1

3[µa + (1 − g)µs]
.

(6)

We used the Robin-type boundary condition to
take into account the photon leakage at the bound-
ary surface. The boundary photon flux (4) can be
rewritten for the diffusion approximation as

Prw = −D(rw)
∂U(rw, ω)

∂n
. (7)

As before, Eq. (5) is discretized in the spatial
domain with an unstructured node-centered finite-
volume method. After discretization of Eq. (5), we
solve the resulting linear system AU = b of alge-
braic equations by using the GMRES(n) solver as
before.

3. Optical Tomographic Inverse
Problem

The inverse problem associated with the estimation
of the spatial distributions of unknown functions
µa(r) and µs(r), can be solved by minimizing the
following real-valued objective function that quan-
tifies the difference between the predictions and the
measurements as:

φ =
1
2

ND∑
d=1

|pd − zd|2 =
1
2

ND∑
d=1

|Qdy − zd|2, (8)

where zd are the measurements at rd′ · d = 1, . . . ,
ND (number of detector-source pairs), Q is the mea-
surement operator which projects the solution vec-
tor y = I or U of either the ERT or the DA onto the
predictions pd of the measurements. The objective
function given by Eq. (8) is minimized by differ-
entiating φ with respect to each of the unknown
function µ = (µa, µs). The minimization is per-
formed here with the limited memory version of
Broyden–Fletcher–Goldfarb–Shanno (lm-BFGS)31
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in combination to an adjoint formulation32 as
described next.

Differentiating the objective function with opti-
cal properties µ = (µa, µs) is straightforward and
leads to the following

∂φ

∂µ
=

[
ND∑
d=1

(
Qy − z

)
Q

∂y

∂µ

]
Re

, (9)

where [·]Re denotes the real part of [·] and the sym-
bol F represents the complex conjugate of F. Note
that the discretized version of the forward model (be
it the DA or the ERT) can be expressed in general
terms as a following complex-valued linear algebraic
equation:

Ay = b, (10)

where A are the coefficient matrix resulting from
discretization on either the DA or the ERT. The
boundary condition (with a source function) comes
into b. Also differentiation of Eq. (10) with respect
to the inverse variable µ gives

∂A
∂µ

y + A
∂y

∂µ
= 0, (11)

which leads to the following sensitivity coefficient
as

∂y

∂µ
= −A−1 ∂A

∂µ
y, (12)

since A is invertible. We thus have for the gradient
of the objective function

∂φ

∂µ
=

[
−

ND∑
d=1

(Qy − z)QA−1 ∂A
∂µ

y

]
Re

. (13)

Introducing a new variable λ called an adjoint vari-
able gives the following equation

−
ND∑
d=1

(Qy − z)QA−1 = λT , (14)

where λT denotes the transpose of λ. The adjoint
variable vector λ is the solution of the following
adjoint equation of Eq. (15) given as

AT λ = −
[

ND∑
d=1

(Qy − z)Q

]T

. (15)

By substituting Eq. (14) into Eq. (13), we arrive at
the following form for the gradient of the objective
function with respect to the optical properties

∂φ

∂µ
=

[
λT ∂A

∂µ
y

]
Re

, (16)

which is very crucial for updating the inverse vari-
ables in the iterative procedure of reconstruction.

4. Hybrid Methods

As described in the preceding section, we minimize
the objective function by iteratively updating the
optical parameters as:

µk+1 = µk + αkdk, (17)

where the superscript k is the iteration number;
α and d are the search step size and the direc-
tion of descent, respectively. We employed here the
lm-BFGS method as an updating scheme that has
been known to be the most efficient unconstrained
gradient-based method among other gradient-type
methods (e.g., conjugate gradient method) used
in the optical imaging field. In the following, we
present a detailed description of two hybrid algo-
rithms with the lm-BFGS updating scheme: the
DA-based hybrid scheme and the low-order ERT-
based hybrid scheme.

4.1. DA-based hybrid scheme

In the DA-based hybrid method, the reconstruction
is performed in two steps: first, the DA is used as a
light propagation model until this DA-based recon-
struction satisfies the prescribed stopping criterion.
Next, the full ERT replaces the DA model and
uses the DA-based inverse solution µm as the initial
guess for the full ERT-based reconstruction. In this
way, we reach the optimum with less CPU times as
compared to the conventional ERT-based code that
uses the full ERT alone throughout the optimiza-
tion process. A brief summary of this algorithm is
as follows:

(1) Pick up a homogeneous initial guess µ0 and set
k = 0.

(2) Intermediate solution through the DA-based
reconstruction:

(A) Solve the DA (5) for U(r, ω), based on µk.
(B) Check the stopping criterion with a loose

tolerance. Continue if not satisfied.
(C) Knowing detector predictions pd and detec-

tor readings zd, solve the adjoint problem
(15) for λ and compute ∇φ[µ] from (16).

(D) Knowing the gradients ∇φ, update the
unknowns µk+1 from the lm-BFGS
method, and return to Step (2)A.
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(3) Set the intermediate solution µm as the new
initial guess µ0:

(A) Solve the ERT (1) for I(r,Ω, ω), based on
µk.

(B) Check the stopping criterion with a tight
tolerance. Continue if not satisfied.

(C) Knowing detector predictions pd and detec-
tor readings zd, solve the adjoint problem
(15) for λ and compute ∇φ[µ] from (16).

(D) Knowing the gradients ∇φ, update the
unknowns µk+1 from the lm-BFGS
method, and return to Step (3)A.

(4) Terminate the optimization process.

4.2. Low-order ERT-based hybrid
scheme: LOERT-H

As mentioned earlier, the DA is of limited accuracy
as a light propagation model when high-absorbing,
low-scattering or fluid-filled (i.e., void-like) regions
are considered. In this case, the DA-based recon-
struction does not perform well to make the good
initial guess for the full ERT-based reconstruction.
As an alternative for such cases, we use here the low-
order (i.e., S2 or S4) ERT as the forward model for
the intermediate solution µm. As compared to the
DA, this low-order ERT requires a longer CPU time
but is still much less expensive than the full ERT.
For examples, the S2 ERT is for only four angu-
lar directions while the S8 ERT is for 80 angular
directions. It is quite easy to see that the CPU time
for the S2 ERT solution reduces to one-tenth of the
CPU time for the S8 ERT solution, which leads to
lots of time savings when this low-order ERT is com-
bined into the reconstruction. Moreover, unlike the
DA, the low-order ERT can be applied to the types
of media with high-absorbing or void-like regions.
Hence, we employ in this work the low-order ERT
as an initial guessing tool in the hybrid scheme.

Similar to the DA-based hybrid scheme, the
low-order ERT-based hybrid scheme first obtains
the intermediate solution µm through the low-order
ERT-based reconstruction and uses µm as an initial
guess for the full ERT-based reconstruction. This
algorithm that is similar to the DA-based hybrid
scheme has the following structure scheme:

(1) Pick up a homogeneous initial guess µ0 and set
k = 0.

(2) Intermediate solution through the low-order
ERT-based reconstruction:

(A) Solve the transport Eq. (1) with the S2 (or
S4) transport theory for I(r,Ω, ω), based
on µk.

(B) Check the stopping criterion. Continue if
not satisfied.

(C) Knowing detector predictions pd and detec-
tor readings zd, solve the adjoint problem
(14) for λ(x, y,Ω, ω) and compute ∇φ[µ]
from (15).

(D) Knowing the gradients ∇φ, update the
unknowns µk+1 from the lm-BFGS
method, and return to Step (2)A.

(3) Set the intermediate solution µk as the new
initial guess µ0:

(E) Solve the transport Eq. (1) with the
higher-order (full) transport theory for
I(r,Ω, ω), based on µk.

(F) Check the strong stopping criterion below
(23). Continue if not satisfied.

(G) Knowing detector predictions Pd and
detector readings Md, solve the adjoint
problem (15) for λ(x, y,Ω, ω) and compute
∇φ[µ] from (16).

(H) Knowing the gradients ∇φ, update the
unknowns µk+1 from the lm-BFGS
method, and return to Step (3)A.

(4) Stop the optimization process.

4.3. Stopping criteria

In both of the two hybrid schemes, we stop the
optimization process when the following stopping
criteria are satisfied:

φ(µk+1) < εt,

|1 − φ(µk+1)/φ(µk)| < 10−3,
(18)

where the prescribed tolerance εt is chosen to have
the same order of magnitude of the measurement
error, which leads to sufficiently stable results in the
principle of discrepancy.32 When noise-free data are
used, the tolerance εt is assigned a very small num-
ber (typically 10−6). The stopping criteria given by
Eq. (18) are applied in the same way to the DA-
based and low-order ERT-based hybrid methods.

We use the same stopping criteria (18) with a
loose tolerance for the intermediate solution µm by
either the DA-based or the low-order ERT-based
reconstruction. The reason for this choice with a
loose tolerance is because the attempts to full con-
vergence could give rise to worse intermediate solu-
tions when both DA- and low-order ERT-based
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codes are of limited accuracy. Note that the DA and
the low-order (S2 or S4) ERT become inaccurate
for the transport regime and for highly anisotropic
scattering media, respectively.

5. Results and Discussions

5.1. Numerical experiments

In this section, we present numerical results of
reconstructions of the spatial distributions of opti-
cal properties inside the medium by using the
hybrid schemes. To evaluate the performance of
the hybrid schemes, we compare the results of the
schemes on various test problems, all with circular
enclosures.

As shown in Fig. 1, the test medium has two
objects embedded in the background: one with inho-
mogeneity in the absorption coefficient and the
other with inhomogeneity in the scattering coeffi-
cient. The circular enclosure is centered at (0, 0)
and eight sources are located around the enclosure
surface at equiangular intervals. The sources are
amplitude-modulated with a frequency of 400 MHz,
and are zero-phased so that the phases measured at
detectors could directly represent the phase delay
to the sources. The 56 detectors are equally spaced
around the enclosure surface. This yields a total of
448 source–detector pairs for reconstruction. The
optical properties of the background medium are
varied depending on each case of the problems,
all within the transport regime. See Table 1 for a
detailed setup of the problem and the corresponding
optical properties of the background medium and
the target object. For the numerical experiments,
we used the synthetic data: we first calculated the

(a) (b)

Fig. 1. Numerical models used for reconstruction of optical properties in the 2 cm-in-diameter circular enclosure. (a) Target
medium of inhomogeneity in the absorption coefficient. (b) Target medium of inhomogeneity in the scattering coefficient.

predictions of the measurements at specified detec-
tor locations by solving the ERT for a given set
of optical properties for each of the problems, and
added random noise of 15 dB to the exact “noisy-
free” data. Note that all synthetic data are gener-
ated on a mesh that is two times finer than the
mesh used for the reconstructions. To quantify the
reconstruction quality, we use two metrics called a
correlation factor ρ(µe, µr) and a deviation factor
δ(µe, µr), as introduced in Ref. 21:

ρ(µe, µr) =
∑Nt

i=1 (µe
i − µ̄e

i )(µ
r
i − µ̄r

i )
(Nt − 1)σ(µe)σ(µr)

,

δ(µe, µr) =

√∑Nt
i=1 (µe

i − µr
i )2Nt

σ(µe)
,

(19)

where µ̄ and σ(µ) are the mean value and the stan-
dard deviation for the spatial function of the optical
property that can be either the absorption coeffi-
cient or the scattering coefficient. Similarly, µe and
µr are the exact and reconstructed distributions of
optical properties, respectively. In terms of quality
of the reconstruction results, ρ(µe, µr) indicates the
degree of correlation between exact and estimated
quantities while δ(µe, µr) describes the discrepancy
in absolute values of exact and estimated quanti-
ties. Accordingly, the closer ρ(µe, µr) gets to unity,
and the closer δ(µe, µr) gets to zero, the better is
the quality of reconstruction. In the following, the
two hybrid methods are applied to functional esti-
mations of unknown optical properties for the three
test cases. All the simulations are carried out on a
Linux workstation with a 700-MHz Pentium Xeon
processor. Note that the full ERT-based reconstruc-
tion is carried out with an S8 angular quadrature.
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Table 1. Problem setup and optical properties considered.

Optical properties

Background Object
Enclosure

Case size, D[cm] µa[cm−1] µ′
s[cm

−1] µa[cm−1] µ′
s[cm

−1]

1 2 0.1 10 g = 0.0 0.2 10
2 2 0.1 7.5 g = 0.5 0.2 7.5
3 2 0.1 5.0 g = 0.9 0.2 5.0
4 2 0.1 10 g = 0.5 0.1 15
5 4.2 0.023 7.5 g = 0.7 0.4 7.5

First, we consider the simple, isotropic-
scattering (i.e., g = 0) medium with inhomogeneity
in the absorption coefficient (Case 1): it has a single
object of µa = 0.2 cm−1 embedded in the back-
ground as shown in Fig. 1(a). We retrieve the spa-
tial distribution of absorption coefficients inside the
medium by using the four reconstruction schemes:
the conventional ERT-based reconstruction scheme,
the DA-based hybrid scheme, and the S2 and S4

ERT-based hybrid schemes. The homogeneous ini-
tial guess is assumed for all the reconstruction
schemes, and the reconstruction results are shown
in Fig. 2. The measures of ρ and δ and CPU times
are given with the number of function evaluations
in Table 2 for each of the methods. As expected, the
four methods gave very similar results: the location
of the object is well identified and the absolute
values of the absorption coefficient are accurately
reconstructed. In terms of the CPU time, however,
we found that the hybrid schemes converge much
faster than the conventional ERT-based reconstruc-
tion scheme. In more details, the DA-based hybrid
scheme reached convergence after 46 function eval-
uations with the DA (taking 129 s) plus additional
three function evaluations with the full ERT (tak-
ing 821 s). The S2 ERT-based hybrid scheme took

(a) (b) (c) (d)

Fig. 2. Case 1: Reconstruction results of the hybrid schemes compared with those with the full ERT-based scheme alone.
(a) The DA-based hybrid scheme. (b) The S2 ERT-based hybrid scheme. (c) The S4 ERT-based hybrid scheme. (d) The full
ERT-based conventional reconstruction code.

54 forward runs with the S2 ERT (1,532 s) plus addi-
tional five forward runs with the S8 ERT (1,345 s).
The S4 ERT-based hybrid scheme converged after
47 function evaluations with the S4 ERT (2,578 s)
plus additional two function evaluations with the
S8 ERT (742 s). The conventional ERT-based recon-
struction scheme reached convergence after a larger
number of function evaluations, i.e., 92 forward runs
taking 21,520 seconds.

Thus the DA-based hybrid scheme reduces the
reconstruction time by a factor of 23, and the S2

(S4) ERT-based hybrid scheme leads to the fac-
tors of 7.4 (6.2), respectively. It can also be noted
that among the three hybrid schemes, the accu-
racy is the highest for the S4 ERT-based hybrid
scheme and the CPU time taken is the smallest for
the DA-based hybrid scheme. Figure 3 shows the
convergence characteristics of the hybrid schemes
as compared to the conventional ERT-based recon-
struction scheme. It can be clearly seen from the
figures that the DA- (and low-order ERT-) based
hybrid codes lead to a significant improvement in
the convergence rate. This fact demonstrates that
for such a medium as Case 1 (with the optical prop-
erties given in Table 2), the DA (or low-order ERT)
can be used as a forward model of light propagation
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Table 2. Reconstruction quality for the test cases obtained with the three proposed hybrid schemes; a small deviation
and large correlation factor represents a high image quality.

Case Method Forward runs Time[sec.] Correlation factor Ec Deviation factor Ed

1 full ERT 82 21520 0.80 0.61
diffusion+ERT 46+3 950(=129+821)(23) 0.80(0.74*) 0.59(0.67*)
s2+ERT 54+5 2877(=1532+1345)(7.4) 0.79(0.75*) 0.60(0.67*)
s4+ERT 47+2 3320(=2578+742)(6.2) 0.81(0.79*) 0.59(0.61*)

2 full ERT 71 19185 0.81 0.62
diffusion+ERT 33+13 3922(=110+3812)(4.9) 0.79(0.63*) 0.64(0.77*)
s2+ERT 51+39 12059(=1521+10538)(1.5) 0.72(0.51*) 0.81(0.89*)
s4+ERT 48+5 5733(=4382+1351)(3.3) 0.81(0.78*) 0.61(0.6*)

3 full ERT 25 16943 0.83 0.56
diffusion+ERT F F F F
s2+ERT F F F F
s4+ERT 11+10 9150(=2438+6712)(2.0) 0.84(0.75*) 0.59(0.68*)

4 full ERT 23 8395 0.80 0.64
diffusion+ERT 43+3 1415(=320+1095)(7.6) 0.81(0.78*) 0.65(0.63*)
s2+ERT F F F F
s4+ERT 20+2 1694(=952+742)(5.44) 0.81(0.81*) 0.64(0.69*)

5 full ERT 78 28783 0.84 N/A
diffusion+ERT 31+9 3787(=298+3489)(7.6) 0.82(0.78*) N/A
s2+ERT F F F N/A
s4+ERT 26+6 5582(=3269+2313)(5.2) 0.85(0.80*) N/A

Note: The letter F represents that either the DA or the low-order ERT does not improve the speed of reconstruction
at all. The symbol “+” denotes the additional computational time (or function evaluations) required for the full
ERT reconstruction in the hybrid reconstruction procedure. The symbol * denotes the accuracies with DA, S2 or S4

solutions. The bold numbers in parentheses denote the speedup factors by the hybrid schemes.

to find a good initial guess for the full ERT-based
reconstruction.

Next, we reconsider the previous case by
increasing the anisotropic factor g and by decreas-
ing the scattering coefficient µ′

s slightly. Two cases
are considered: one with g = 0.5 and µ′

s = 7.5 cm−1

(Case 2) and one with g = 0.9 and µ′
s = 5.0 cm−1

(Case 3). With these examples we examine how well
the DA and low-order ERT codes fit into such cases.
The absorption coefficients for the background and
the target object are kept the same as those in
Case 1. As before, we reconstructed the absorption
coefficient, and the accuracy of the results is given
in Table 2 in terms of the correlation (ρ) and devi-
ation (δ) factors. Although all the methods gave
similar accuracy for these two cases, a difference can
be observed in the performance between the three
hybrid schemes.

For the case with g = 0.5 (Case 2), the
DA-based hybrid scheme took 33 forward runs
(110 s) with the DA plus additional 13 forward
runs (3,812 s) with the S8 ERT. The S2 ERT-
based hybrid scheme converged after 51 forward
runs (1,521 s) with the S2 ERT plus additional

39 forward runs (10,538 s) with the S8 ERT. The
S4 ERT-based hybrid scheme reached convergence
after 48 function evaluations (4,382 s) with the
S4 ERT and additional five function evaluations
(1,351 s) with the S8 ERT. Thus the DA- and S4

ERT-based schemes still work well, reducing the
total reconstruction time, while as shown in Fig. 4
the S2 ERT-based hybrid code does not seem to
work well in this case, i.e., it does not improve the
speed of reconstruction [see also Fig. 3(b)]. The
reason for this can be explained by the fact that
the S2 ERT considers only eight angular directions
to simulate an anisotropic scattering behavior with
g = 0.5, and thus the S2 quadrature is too coarse
to capture the anisotropic scattering pattern prop-
erly. It should also be noted that among the three
hybrid codes the S4 ERT-based hybrid code gives
the highest correlation factor ρ (0.79) and the small-
est deviation factor δ (0.63) for this case.

For Case 3, we observed that only the S4

ERT-based code produces the feasible intermedi-
ate solution µm while the DA- and S2 ERT-based
codes do not converge to any reasonable solution
[see Fig. 3(c) and Fig. 4]. In terms of function
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(a) (b)

(c)

Fig. 3. Convergence characteristics of the hybrid schemes applied to the reconstruction of the spatial distribution of the
absorption coefficient within the test medium. (a) Case 1. (b) Case 2. (c) Case 3.

evaluations, the S4 ERT-based hybrid code took 11
function evaluations with the S4 ERT (2,438 s) plus
additional 10 function evaluations with the S8 ERT
(6,712 s), which consequently leads to a speedup
factor of only two. The reason for this observation
can be understood by looking at the fact that this
case with g = 0.9, µa = 0.1 cm−1 and µ′

s = 5.0 cm−1

is far from the diffuse regime and thus can be con-
sidered to be closer to the transport regime. That
is why the DA and S2 ERT models fail for this case.
As a result, for the low-scattering, high-anisotropic
cases, it can be stated that the performance of the
hybrid codes on the speedup of reconstruction is not
significant as compared to the two previous cases.

Next, we consider the case of reconstructing
the scattering coefficient µ′

s inside the medium

(Case 4). The absorption and scattering coefficients
of the background medium are the same as for
Case 1 and the anisotropic factor g is set to 0.5
as Case 2. The target object has inhomogeneity in
µ′

s as shown in Fig. 1(b) (see Table 1). The three
hybrid schemes are applied to the estimation of the
spatial distribution of the scattering coefficient µ′

s

inside the medium, and then the results were com-
pared to those of the full (S8) ERT-based code in
terms of CPU time and accuracy. The CPU times
and accuracy for this case are also summarized in
Table 2 for all the codes used. Also the intermedi-
ate solutions µm are displayed in Fig. 5 for each of
the hybrid codes. As a result, it was shown that
the S2 ERT-based code did not give satisfactory
results for the intermediate solution µm for the
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Intermediate inverse solutions for Case 2 obtained with: (a) DA; (b) S2 ERT; (c) S4 ERT, and for Case 3 obtained
with: (d) DA; (e) S2 ERT; (f) S4 ERT.

(a) (b) (c) (d)

Fig. 5. Intermediate inverse solutions for Case 4 obtained with: (a) the DA-based reconstruction; (b) the S2 ERT-based
reconstruction; (c) the S4 ERT-based reconstruction. Compare the intermediate solutions (a), (b) and (c) to the reconstruction
results (d) by the full ERT-based conventional reconstruction method.

(a) (b) (c) (e)

Fig. 6. Intermediate reconstruction maps for the 4.1 cm-in-diameter tissue phantom. (a) The DA-based reconstruction.
(b) The S2 ERT-based reconstruction. (c) The S4 ERT-based reconstruction. (d) The full ERT-based conventional scheme.

same reason as mentioned in the previous cases [see
Fig. 6(b)], while the other two (DA-based and S4

ERT-based codes) work very well to obtain the fea-
sible intermediate solution µm that can be used to
accelerate the full ERT-based reconstruction pro-
cess [see Figs. 5(a) and 5(c)]. As a consequence, the

DA- and S4 ERT-based codes lead to the speedup
factors of 7.6 and 5.4 respectively. In terms of accu-
racy, the two hybrid codes, except for the S2 ERT-
based hybrid code, show similar results: both with
ρ = 0.81 and δ = 0.64 which indicates that the
reconstructed map agrees well with the exact map
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both with respect to the location and the recon-
structed value of the object.

5.2. Experimental study

In addition to the numerical studies, we have
started to explore the performance of our hybrid
codes on experimental data. For the experimen-
tal studies, we use a tissue phantom with optical
properties similar to those used for the numerical
studies. A 4.1 cm-in-diameter cylindrical phantom
is filled with a 1% intralipid fluid whose optical
properties are known as µa = 0.023 cm−1, µ′

s =
7.29 cm−1 and g = 0.73. Also the cylinder phan-
tom consists of a simple absorption inclusion rod
(with the same scattering properties as the back-
ground), filled with Indian ink whose µa is not
known. The cylinder is surrounded by two fiber-
holding rings, each with 12 sources and 12 detec-
tors spaced at 15◦ intervals. The data were acquired
with a dynamic near-infrared optical tomographic
(DYNOT) instrument. A more detailed descrip-
tion of the DYNOT instrument can be found
in Ref. 33.

Since our instrument does not provide the abso-
lute measurements due to the unknown calibration
errors such as photon loss in fibers, we employed
the following objective function34–35:

φ =
1
2

ND∑
d=1

∥∥∥∥Mtar,d

Mref,d
Pref,d − Ptar,d

∥∥∥∥
2

, (20)

where the subscript d denotes the number of mea-
surements. Mtar,d and Mref,d denote the measure-
ments for the target medium of unknown opti-
cal properties and the reference medium of known
optical properties, respectively. Pref,d and Ptar,d are
the corresponding forward predictions for the ref-
erence medium of known optical properties and
the target medium of unknown optical properties,
respectively.

We reconstructed the spatial distribution of the
absorption coefficient in the cylinder by using the
hybrid schemes. Since we do not know the exact
value of the absorption coefficient of Indian ink, we
just provide the correlation factor ρ alone in Table 2
for a qualitative assessment of the reconstructed
images to evaluate the performance of the codes.
As shown in Fig. 6, the intermediate reconstruction
results from the DA- and S4 ERT-based reconstruc-
tions follow well the result obtained from the S8

ERT-based conventional method. In terms of CPU

time, we observed that the hybrid schemes accel-
erate the reconstruction process by a factor of six
to eight. As in the numerical studies, the S2 ERT-
based reconstruction did not make the reasonable
initial guess in this case. These results demonstrate
that the DA- and S4 ERT-based hybrid codes lead
to significant time saving while keeping reasonable
accuracy.

6. Conclusion

We introduced here the three DA-ERT hybrid
codes: the DA-based hybrid code, the S2 ERT-based
hybrid code, and the S4 ERT-based hybrid code. To
evaluate the performance of the codes, we presented
numerical and experimental studies by comparing
the results of the hybrid codes to those of the S8

ERT-based conventional code.
We showed that the hybrid schemes are very

useful for reducing the reconstruction time. The
DA-based hybrid code accelerates the reconstruc-
tion process up to 23 times. The S2 ERT-based
hybrid does not work well for most of the cases
considered here, and the S4 ERT-based hybrid code
always performs well for all the cases considered in
this work, leading to a speedup factor of 6.2.
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